Joint numerical ranges for unbounded normal operators
نویسندگان
چکیده
منابع مشابه
Numerical ranges of composition operators
Composition operators on the Hilbert Hardy space of the unit disk are considered. The shape of their numerical range is determined in the case when the symbol of the composition operator is a monomial or an inner function fixing 0. Several results on the numerical range of composition operators of arbitrary symbol are obtained. It is proved that 1 is an extreme boundary point if and only if 0 i...
متن کاملOn Generalized Numerical Ranges of Quadratic Operators
It is shown that the result of Tso-Wu on the elliptical shape of the numerical range of quadratic operators holds also for the essential numerical range. The latter is described quantitatively, and based on that sufficient conditions are established under which the c-numerical range also is an ellipse. Several examples are considered, including singular integral operators with the Cauchy kernel...
متن کاملMultiplicities, Boundary Points, and Joint Numerical Ranges
The multiplicity of a point in the joint numerical range W (A1, A2, A3) ⊆ R is studied for n×n Hermitian matrices A1, A2, A3. The relative interior points of W (A1, A2, A3) have multiplicity greater than or equal to n−2. The lower bound n−2 is best possible. Extreme points and sharp points are studied. Similar study is given to the convex set V (A) := {xT Ax : x ∈ R, x x = 1} ⊆ C, where A ∈ Cn×...
متن کاملElliptical Range Theorems for Generalized Numerical Ranges of Quadratic Operators
The classical numerical range of a quadratic operator is an elliptical disk. This result is extended to different kinds of generalized numerical ranges. In particular, it is shown that for a given quadratic operator, the rank-k numerical range, the essential numerical range, and the q-numerical range are elliptical disks; the c-numerical range is a sum of elliptical disks, and the Davis-Wieland...
متن کاملHigher Rank Numerical Ranges of Normal Matrices
The higher rank numerical range is closely connected to the construction of quantum error correction code for a noisy quantum channel. It is known that if a normal matrix A ∈ Mn has eigenvalues a1, . . . , an, then its higher rank numerical range Λk(A) is the intersection of convex polygons with vertices aj1 , . . . , ajn−k+1 , where 1 ≤ j1 < · · · < jn−k+1 ≤ n. In this paper, it is shown that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 1985
ISSN: 0013-0915,1464-3839
DOI: 10.1017/s0013091500022665